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Diffraction by aperiodic structures at high temperatures 
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Abstract This paper studies, in the Einstein model, the influence of thermal motion on 
diffraction by aperiodic structms. In particular, it shows that in a quasiclystal thermal motion 
reduces the intensity of the Bragg peaks by a Debye-Waller factor in the same way as in a 
crystal. The result applies to a large class of aperiodic structures. 

1. Introduction 

Since the discovery of quasicrystals [I] considerable attention has been paid to diffraction 
by various aperiodic structures (see, for example, [ 2 4 ,  and references given below). 
Inelastic neutron scattering in icosahedral quasicrystals has been the subject of several 
recent experimental (see, for example, 15-71) and theoretical (see, for example, [SI) studies. 
This paper studies the effect on the diffraction spectrum of thermal motion in the Einstein 
approximation of the solid. Thus, this work pertains primarily to x-ray diffraction at high 
temperatures.  it will show rigorously that, in the Einstein approximation, the diffraction 
spectrum of a large class of (hypothetical, monatomic) quasicrystals is affected by thermal 
motion in the same way as that of a crystal. 

Consider a countable set 
X c Rd and let fi  be the measure 

More specifically, the problem studied is the following. 

p := C6" 
XEX 

where 8, denotes the delta function at x .  The measure p models an infinite system of 
identical atoms at positions given by X .  The set X will only be assumed to satisfy a hard- 
core conditon and an ergodicity condition described below. Such generality is desirable 
because the precise atomic structure of quasicrystals is not known. The conditions on X 
are satisfied for the set of vertices of tilings obtained by the projection method 141 or by 
a primitive substitution 19, IO]. Thus they are for instance satisfied for the models studied 
in 111-201. 

Diffraction by the set X is described by the Fourier transform p (in the sense of tempered 
distributions) of the autoconelation 

(1.2) 

(cf [4]). Both p and y are positive measures on Rd. The physical meaning of p is that 
P(q/h)dq is proportional to the intensity of radiation of wavelength h scattered per atom 
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into the volume element dq around Qo+q. where Qo is the direction of the incident beam. 
Delta functions in i. comespond to Bragg peaks in the diffraction spectrum. 

Thermal motion is now modelled by displacing the atoms by independent identically 
distributed random variables qx; if X’ = { x  + rlx I x E X] then p’ = EXEX, 6, represents (a 
realization of) the instantaneous positions of the atoms. It will be shown here that y@,, the 
autocorrelation of p’, is almost surely constant and is completely determined by yK and the 
distribution of the random variables. There is no need to take an expectation with respect 
to the randomness; the system is ‘self-averaging’. This is of interest because the frequency 
of thermal motion is much lower than that of x-ray radiation (cf [21, section 7.1.11): the 
diffraction pattern is determined by p’ at every instant. 

2. Preliminaries 

This section recalls some facts about measures that will be needed and states the conditions 
on the set X. Among other things, those conditions imply that the limit (1.2) exists. 

A measure p on Rd is a linear functional on the space IC of complex continuous 
functions on Rd of compact support with the property that for every compact subset K of 
Rd there is a constant UK such that 

IP(f)i < UK llfll 
for all f E IC with support in K ;  here 11 .11  denotes the supremum norm. All measures 
encountered here will be positive: p(f) > 0 for all f > 0. The set of measures on Rd 
is given the vague topology: a sequence of measures (pn]  converges to p in the vague 
topology if limn-,m pa(f) = p(f) for all f E K. For a general reference for measures as 
linear functionals, see [22]. - 

For any function f ,  define f by f ( x )  := f(-x) and f by f := f, where the bar 
denotes complex conjugation. Similarly, for a measure p. define f i  by fi(f)  := p( f )  and 
p by p(f) := p(f) and f i  by f i  := 5. Recall that the convolution p * w of two measures 
p and U is defined by p* u(f) := Jp(dx)w(dy)f(x+ y); it is well1 defined if at least one 
of the two measures has compact support. 

Denote the cube [-LIZ, L/2Id by CL. For an arbitrary measure p. let p~ denote its 
restriction to CL,  i.e. p~ := lcLp.  The autocorrelation yp of p is defined [4] as the vague 
limit of the measures y,” := L - d p ~  * JL, provided the limit exists. Note that this implies 
that for every compact set K there is a constant BK such that 

$ ( K )  < p K  for all L. (2.1) 

Since 8, * gY = &., we see that y,” := (L)-d CX,YEXnCL Sx-y and that yK is indeed given 
by (1.2). Note that for all X the autocorrelation y, has a delta function at 0 with weight 
given by the density of X, the number of points per unit of volume. 

The set X is required to satisfy two conditions. First, there is a minimium distance 
between points: there exists a S such that Ix - yI > 6 for all x , y  E X. The second 
condition is an ergodicity condition, whose statement requires some definitions. Let 
A c Rd have a diameter smaller then 612. An A-chain of length n (n 3 1) is a sequence 
( x , ,  y , ) ,  . , . , (xn, y,J of n (ordered) pairs in X x X such that xi - yi E A and yc = xi+, 
for all i. A pair ( x ,  y) E X x X such that x - y E A is called odd (even) if it has odd 
(even) index in the longest A-chain in which it occurs. The pairs in an Ashain of infinite 
length are called odd and even alternatingly, after one pair in the chain has arbitrarily been 
designated odd or even. (The small diameter of A ensures that chains cannot split.) Let 
N;(A) (N; (A) )  denote the number of odd (even) pairs ( x ,  y )  E X x X in the cube CL. 
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The second condition is that the frequencies L - d N i ( A )  and L-dN;(A)  exist as L + CO 

for every translate A = (x E Rd 1 lxij c 8') + a  of a cube of side 8' < S/Z& 
Both conditions are satisfied for the sets of vertices of tilings obtained from the projection 

method [4] and tilings defined by primitive substitutions (see, for example, [lo]), because 
in these tilings the number of different (modulo translations) configurations of diameter less 
then R is finite for every R; moreover, each of these configur&ions occurs with a well 
defined frequency. Note, however, that the second condition can still be satisfied if the 
number of different configurations of diameter less then R is infinite. An example would 
be the set of vertices of a 'pinwheel tiling' of the plane [U]. 

3. Result 

Theorem. Let y, be the autocorrelation of p = ~ , , x S x .  Let ( q z J x E x  be independent, 
identically distributed random variables with common distribution v and finite expectation, 
taking values in Rd. Let X' := ( x +  q& E X} and p' := Crsx, 8,. Then, with probability 
one, p' has autocorrelation yfi, given by 

where no = y@([O)) is the density of X. 

Proox Note that it suffices to show that y,",Q + y,d~ with probability one as L + CO for 
one Q E K because K is separable. Assume, without loss of generality, that the support of 
Q contains the origin. 

For I > 0, let PI be the partition of Wd by translates of the cube ( x  E Rdl - g 6 xi < $1 
centred around points of fZd. Let I z 2 d / 8 ,  so that every cube in PI contains at most 
one point of X. For every pair ( x ,  y )  E X x X, let zz,y E +Zd be the centre of the cube in 
P, containing x - y and let Cx.? := qx - qy. 

0 an I' such that 1 > I' implies 
that lQ(z') - q5(z)l < t whenever z and z' lie in the same cube of PI. Then, for all L ,  

Since q5 is uniformly continuous, there is for every E 

where the constant K depends on Q, but is independent of L (by (2.1)). E and 1. Clearly 

where Bz is the cube in PI centred around z. This equation defines a discrete measure U /  

that converges vaguely to yp  as I -+ CO. Now 
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The 5x,y are identically distributed random variables with distribution u*5 = u*G. Moreover, 
the [ < x ; . y ) ~ ~ x . y ,  ~ ~ , ~ ~ l  in the ‘odd’ sum are independent, and so are those in the ‘even’ sum, 
because Jx,.xz and <xs.z, are independent if and only if the pairs (XI, x2) and (x3, xq) have 
no point in common. Hence, if z + 0, 

with probability one by the strong law of large numbers, where ni is the density of the 
pairs ( x ,  y) that contribute to the sum; this density exists by the second condition on X. 
An analogous statement holds for the even pairs. Note that ni +n: = y,,(B,). 

Since the support of Q contains finitely many points of $Zd it follows that 

= n(Bo)Q(O) + yg(BZ)  + 0~ * j ( W  (3.2) 

with probability one. Recall that y,, has a Dirac delta at 0; its weight is no = y@(Bo) since 
I is so large that the diameter of BO is smaller than S. Therefore the right-hand side of (3.2) 
can be written as 

Z € ( l / W \ I O t  

[U‘ * (U * C) + (60 - U * qno](Q).  

Since E was arbitrary, letting I + 00 proves the theorem. 0 

Corallury. With probability one, pw, = &[clZ + no(l - [cl’). If pw is a purely discrete 
measure then, with probability one, the discrete part of p,,, is given by p,,lOlz and the 
continuous part by no(l - IGI2). 

4. Discussion 

The corollary shows that ‘switching on’ the thermal motion has two effects on the diffraction 
spectrum. First, the Fourier transfom= of the original, ‘static’, autocorrelation is multiplied 
by ID12. This is a function that is 1 at the origin and that tends to zero with yincreasing 
distance from the origin if U is non-singular. The second effect is to add a continuous 
function, no(l - 1OI2), which describes diffuse scattering due to thermal motion. 

If & is purely discrete measure then one can regard X as the set of atomic positions of 
a monatomic crystal (if X is periodic) or of a hypothetical monatomic quasicrystal (if X is 
not periodic). Then p,,151* is the discrete part of y&,: i.e. the weight of a delta function at 
q in f,, is multiplied by a factor lGl2(q) < 1. Thus we see that 1Ol2(q) is the Debye-Waller 
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factor. But note that the theorem and the corollary make no assumption on yp at all. They 
also hold when y& has a continuous part, is absolutely continuous, or even purely singular 
continuous, as for instance in the model discussed in [14,16]. 

The effects of thermal motion on the diffraction spectrum are well understood for crystals 
(see, e.g., [Zl, chapter 71). They have first been studied by Debye [24], who considered a 
large but finite crystal and assumed that atoms moved independently in identical harmonic 
potentials. In our terminology, this amounts to taking for v a Gaussian distribution. To get a 
time-independent spectrum Debye took the expectation over all configurations with respect 
to their thermal weights. He took the expection in Fourier space (i.e. the expectation 
of the scattered intensity) rather then in direct space. The integrals could be evaluated 
because the potential was harmonic. Often (see, e.g., [21, section 7.1.11) the calculation 
of the expectation is simplified by the assumption that the displacements are small, an 
approximation that is 'quite rough' [21, p 1891 in some situations. 

What is new here is that the theorem is not restricted to periodic structures (i.e. crystals). 
But even for crystals our work differs from the standard treatment in its strictly probabilistic 
formulation and proof that allows us to consider arbimy distributions U and that dispenses 
with the need to take an expectation because of self-averaging in the infinite system. In 
addition, the displacements are by no means required to be small. For instance, the corollary 
shows that if yp  is purely discrete and U is the uniform distribution on a ball of radius R, 
then Pp, has a discrete part for all R > 0. 

It should be mentioned that the proof of the theorem can be generalized to systems with 
several atomic species (i.e. measures /I in which the delta functions have a weight indicating 
the atomic species) provided the second hypothesis on X is suitably strenghtened. 

Finally, note that the first term in (3.1) is equal to the autocorrelation of p * U. Thus 
the corollary shows that the Dirac peaks of the system with thermal motion can be obtained 
from the 'timeaveraged' structure p * v. This is often taken for granted in discussions of 
thermal motion in crystals (see, e.g., [25, section 7.3.41). 
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